Restrict a Container's Syscalls with seccomp

FEATURE STATE: Kubernetes v1.19 [stable]

Seccomp stands for secure computing mode and has been a feature of the Linux kernel since version 2.6.12. It can be used to sandbox the privileges of a process, restricting the calls it is able to make from userspace into the kernel. Kubernetes lets you automatically apply seccomp profiles loaded onto a node to your Pods and containers.

Identifying the privileges required for your workloads can be difficult. In this tutorial, you will go through how to load seccomp profiles into a local Kubernetes cluster, how to apply them to a Pod, and how you can begin to craft profiles that give only the necessary privileges to your container processes.

Objectives

  • Learn how to load seccomp profiles on a node
  • Learn how to apply a seccomp profile to a container
  • Observe auditing of syscalls made by a container process
  • Observe behavior when a missing profile is specified
  • Observe a violation of a seccomp profile
  • Learn how to create fine-grained seccomp profiles
  • Learn how to apply a container runtime default seccomp profile

Before you begin

In order to complete all steps in this tutorial, you must install kind and kubectl.

This tutorial shows some examples that are still alpha (since v1.22) and others that use only generally available seccomp functionality. You should make sure that your cluster is for the version you are using.

The tutorial also uses the curl tool for downloading examples to your computer. You can adapt the steps to use a different tool if you prefer.

Download example seccomp profiles

The contents of these profiles will be explored later on, but for now go ahead and download them into a directory named profiles/ so that they can be loaded into the cluster.

{
    "defaultAction": "SCMP_ACT_LOG"
}

{
    "defaultAction": "SCMP_ACT_ERRNO"
}

{
    "defaultAction": "SCMP_ACT_ERRNO",
    "architectures": [
        "SCMP_ARCH_X86_64",
        "SCMP_ARCH_X86",
        "SCMP_ARCH_X32"
    ],
    "syscalls": [
        {
            "names": [
                "accept4",
                "epoll_wait",
                "pselect6",
                "futex",
                "madvise",
                "epoll_ctl",
                "getsockname",
                "setsockopt",
                "vfork",
                "mmap",
                "read",
                "write",
                "close",
                "arch_prctl",
                "sched_getaffinity",
                "munmap",
                "brk",
                "rt_sigaction",
                "rt_sigprocmask",
                "sigaltstack",
                "gettid",
                "clone",
                "bind",
                "socket",
                "openat",
                "readlinkat",
                "exit_group",
                "epoll_create1",
                "listen",
                "rt_sigreturn",
                "sched_yield",
                "clock_gettime",
                "connect",
                "dup2",
                "epoll_pwait",
                "execve",
                "exit",
                "fcntl",
                "getpid",
                "getuid",
                "ioctl",
                "mprotect",
                "nanosleep",
                "open",
                "poll",
                "recvfrom",
                "sendto",
                "set_tid_address",
                "setitimer",
                "writev"
            ],
            "action": "SCMP_ACT_ALLOW"
        }
    ]
}

Run these commands:

mkdir ./profiles
curl -L -o profiles/audit.json https://k8s.io/examples/pods/security/seccomp/profiles/audit.json
curl -L -o profiles/violation.json https://k8s.io/examples/pods/security/seccomp/profiles/violation.json
curl -L -o profiles/fine-grained.json https://k8s.io/examples/pods/security/seccomp/profiles/fine-grained.json
ls profiles

You should see three profiles listed at the end of the final step:

audit.json  fine-grained.json  violation.json

Create a local Kubernetes cluster with kind

For simplicity,

apiVersion: kind.x-k8s.io/v1alpha4
kind: Cluster
nodes:
- role: control-plane
  extraMounts:
  - hostPath: "./profiles"
    containerPath: "/var/lib/kubelet/seccomp/profiles"

Download that example kind configuration, and save it to a file named kind.yaml:

curl -L -O https://k8s.io/examples/pods/security/seccomp/kind.yaml

You can set a specific Kubernetes version by setting the node's container image. See

As an alpha feature, you can configure Kubernetes to use the profile that the container runtime prefers by default, rather than falling back to Unconfined. If you want to try that, see enable the use of RuntimeDefault as the default seccomp profile for all workloads before you continue.

Once you have a kind configuration in place, create the kind cluster with that configuration:

kind create cluster --config=kind.yaml

After the new Kubernetes cluster is ready, identify the Docker container running as the single node cluster:

docker ps

You should see output indicating that a container is running with name kind-control-plane. The output is similar to:

CONTAINER ID        IMAGE                  COMMAND                  CREATED             STATUS              PORTS                       NAMES
6a96207fed4b        kindest/node:v1.18.2   "/usr/local/bin/entr…"   27 seconds ago      Up 24 seconds       127.0.0.1:42223->6443/tcp   kind-control-plane

If observing the filesystem of that container, you should see that the profiles/ directory has been successfully loaded into the default seccomp path of the kubelet. Use docker exec to run a command in the Pod:

# Change 6a96207fed4b to the container ID you saw from "docker ps"
docker exec -it 6a96207fed4b ls /var/lib/kubelet/seccomp/profiles
audit.json  fine-grained.json  violation.json

You have verified that these seccomp profiles are available to the kubelet running within kind.

Enable the use of RuntimeDefault as the default seccomp profile for all workloads

FEATURE STATE: Kubernetes v1.22 [alpha]

SeccompDefault is an optional kubelet feature gate as well as corresponding --seccomp-default command line flag. Both have to be enabled simultaneously to use the feature.

If enabled, the kubelet will use the RuntimeDefault seccomp profile by default, which is defined by the container runtime, instead of using the Unconfined (seccomp disabled) mode. The default profiles aim to provide a strong set of security defaults while preserving the functionality of the workload. It is possible that the default profiles differ between container runtimes and their release versions, for example when comparing those from CRI-O and containerd.

Last modified January 27, 2022 at 9:41 AM PST: