Debugging DNS Resolution
This page provides hints on diagnosing DNS problems.
Before you begin
You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. It is recommended to run this tutorial on a cluster with at least two nodes that are not acting as control plane hosts. If you do not already have a cluster, you can create one by using minikube or you can use one of these Kubernetes playgrounds:
Your cluster must be configured to use the CoreDNS addon or its precursor, kube-dns.
Your Kubernetes server must be at or later than version v1.6.
To check the version, enter kubectl version
.
Create a simple Pod to use as a test environment
apiVersion: v1
kind: Pod
metadata:
name: dnsutils
namespace: default
spec:
containers:
- name: dnsutils
image: k8s.gcr.io/e2e-test-images/jessie-dnsutils:1.3
command:
- sleep
- "3600"
imagePullPolicy: IfNotPresent
restartPolicy: Always
default
namespace. DNS name resolution for
services depends on the namespace of the pod. For more information, review
DNS for Services and Pods.
Use that manifest to create a Pod:
kubectl apply -f https://k8s.io/examples/admin/dns/dnsutils.yaml
pod/dnsutils created
…and verify its status:
kubectl get pods dnsutils
NAME READY STATUS RESTARTS AGE
dnsutils 1/1 Running 0 <some-time>
Once that Pod is running, you can exec nslookup
in that environment.
If you see something like the following, DNS is working correctly.
kubectl exec -i -t dnsutils -- nslookup kubernetes.default
Server: 10.0.0.10
Address 1: 10.0.0.10
Name: kubernetes.default
Address 1: 10.0.0.1
If the nslookup
command fails, check the following:
Check the local DNS configuration first
Take a look inside the resolv.conf file. (See Customizing DNS Service and Known issues below for more information)
kubectl exec -ti dnsutils -- cat /etc/resolv.conf
Verify that the search path and name server are set up like the following (note that search path may vary for different cloud providers):
search default.svc.cluster.local svc.cluster.local cluster.local google.internal c.gce_project_id.internal
nameserver 10.0.0.10
options ndots:5
Errors such as the following indicate a problem with the CoreDNS (or kube-dns) add-on or with associated Services:
kubectl exec -i -t dnsutils -- nslookup kubernetes.default
Server: 10.0.0.10
Address 1: 10.0.0.10
nslookup: can't resolve 'kubernetes.default'
or
kubectl exec -i -t dnsutils -- nslookup kubernetes.default
Server: 10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local
nslookup: can't resolve 'kubernetes.default'
Check if the DNS pod is running
Use the kubectl get pods
command to verify that the DNS pod is running.
kubectl get pods --namespace=kube-system -l k8s-app=kube-dns
NAME READY STATUS RESTARTS AGE
...
coredns-7b96bf9f76-5hsxb 1/1 Running 0 1h
coredns-7b96bf9f76-mvmmt 1/1 Running 0 1h
...
k8s-app
is kube-dns
for both CoreDNS and kube-dns deployments.
If you see that no CoreDNS Pod is running or that the Pod has failed/completed, the DNS add-on may not be deployed by default in your current environment and you will have to deploy it manually.
Check for errors in the DNS pod
Use the kubectl logs
command to see logs for the DNS containers.
For CoreDNS:
kubectl logs --namespace=kube-system -l k8s-app=kube-dns
Here is an example of a healthy CoreDNS log:
.:53
2018/08/15 14:37:17 [INFO] CoreDNS-1.2.2
2018/08/15 14:37:17 [INFO] linux/amd64, go1.10.3, 2e322f6
CoreDNS-1.2.2
linux/amd64, go1.10.3, 2e322f6
2018/08/15 14:37:17 [INFO] plugin/reload: Running configuration MD5 = 24e6c59e83ce706f07bcc82c31b1ea1c
See if there are any suspicious or unexpected messages in the logs.
Is DNS service up?
Verify that the DNS service is up by using the kubectl get service
command.
kubectl get svc --namespace=kube-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
...
kube-dns ClusterIP 10.0.0.10 <none> 53/UDP,53/TCP 1h
...
kube-dns
for both CoreDNS and kube-dns deployments.
If you have created the Service or in the case it should be created by default but it does not appear, see debugging Services for more information.
Are DNS endpoints exposed?
You can verify that DNS endpoints are exposed by using the kubectl get endpoints
command.
kubectl get endpoints kube-dns --namespace=kube-system
NAME ENDPOINTS AGE
kube-dns 10.180.3.17:53,10.180.3.17:53 1h
If you do not see the endpoints, see the endpoints section in the debugging Services documentation.
For additional Kubernetes DNS examples, see the in the Kubernetes GitHub repository.
Are DNS queries being received/processed?
You can verify if queries are being received by CoreDNS by adding the log
plugin to the CoreDNS configuration (aka Corefile).
The CoreDNS Corefile is held in a ConfigMap named coredns
. To edit it, use the command:
kubectl -n kube-system edit configmap coredns
Then add log
in the Corefile section per the example below:
apiVersion: v1
kind: ConfigMap
metadata:
name: coredns
namespace: kube-system
data:
Corefile: |
.:53 {
log
errors
health
kubernetes cluster.local in-addr.arpa ip6.arpa {
pods insecure
upstream
fallthrough in-addr.arpa ip6.arpa
}
prometheus :9153
forward . /etc/resolv.conf
cache 30
loop
reload
loadbalance
}
After saving the changes, it may take up to minute or two for Kubernetes to propagate these changes to the CoreDNS pods.
Next, make some queries and view the logs per the sections above in this document. If CoreDNS pods are receiving the queries, you should see them in the logs.
Here is an example of a query in the log:
.:53
2018/08/15 14:37:15 [INFO] CoreDNS-1.2.0
2018/08/15 14:37:15 [INFO] linux/amd64, go1.10.3, 2e322f6
CoreDNS-1.2.0
linux/amd64, go1.10.3, 2e322f6
2018/09/07 15:29:04 [INFO] plugin/reload: Running configuration MD5 = 162475cdf272d8aa601e6fe67a6ad42f
2018/09/07 15:29:04 [INFO] Reloading complete
172.17.0.18:41675 - [07/Sep/2018:15:29:11 +0000] 59925 "A IN kubernetes.default.svc.cluster.local. udp 54 false 512" NOERROR qr,aa,rd,ra 106 0.000066649s
Are you in the right namespace for the service?
DNS queries that don't specify a namespace are limited to the pod's namespace.
If the namespace of the pod and service differ, the DNS query must include the namespace of the service.
This query is limited to the pod's namespace:
kubectl exec -i -t dnsutils -- nslookup <service-name>
This query specifies the namespace:
kubectl exec -i -t dnsutils -- nslookup <service-name>.<namespace>
To learn more about name resolution, see DNS for Services and Pods.
Known issues
Some Linux distributions (e.g. Ubuntu) use a local DNS resolver by default (systemd-resolved).
Systemd-resolved moves and replaces /etc/resolv.conf
with a stub file that can cause a fatal forwarding
loop when resolving names in upstream servers. This can be fixed manually by using kubelet's --resolv-conf
flag
to point to the correct resolv.conf
(With systemd-resolved
, this is /run/systemd/resolve/resolv.conf
).
kubeadm automatically detects systemd-resolved
, and adjusts the kubelet flags accordingly.
Kubernetes installs do not configure the nodes' resolv.conf
files to use the
cluster DNS by default, because that process is inherently distribution-specific.
This should probably be implemented eventually.
Linux's libc (a.k.a. glibc) has a limit for the DNS nameserver
records to 3 by default. What's more, for the glibc versions which are older than glibc-2.17-222 (see this bug from 2005). Kubernetes needs to consume 1 nameserver
record and 3 search
records. This means that if a local installation already uses 3 nameserver
s or uses more than 3 search
es while your glibc version is in the affected list, some of those settings will be lost. To work around the DNS nameserver
records limit, the node can run dnsmasq
, which will provide more nameserver
entries. You can also use kubelet's --resolv-conf
flag. To fix the DNS search
records limit, consider upgrading your linux distribution or upgrading to an unaffected version of glibc.
search
records.
If you are using Alpine version 3.3 or earlier as your base image, DNS may not work properly due to a known issue with Alpine. Kubernetes details more information on this.