Calculate percentages with Flux
Calculating percentages from queried data is a common use case for time series data.
To calculate a percentage in Flux, operands must be in each row.
Use map()
to re-map values in the row and calculate a percentage.
To calculate percentages
- Use
from()
,range()
andfilter()
to query operands. - Use
pivot()
orjoin()
to align operand values into rows. - Use
map()
to divide the numerator operand value by the denominator operand value and multiply by 100.
The following examples use pivot()
to align operands into rows because
pivot()
works in most cases and is more performant than join()
.
See Pivot vs join.
from(bucket: "example-bucket")
|> range(start: -1h)
|> filter(fn: (r) => r._measurement == "m1" and r._field =~ /field[1-2]/ )
|> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
|> map(fn: (r) => ({ r with _value: r.field1 / r.field2 * 100.0 }))
GPU monitoring example
The following example queries data from the gpu-monitor bucket and calculates the percentage of GPU memory used over time. Data includes the following:
gpu
measurementmem_used
field: used GPU memory in bytesmem_total
field: total GPU memory in bytes
Query mem_used and mem_total fields
from(bucket: "gpu-monitor")
|> range(start: 2020-01-01T00:00:00Z)
|> filter(fn: (r) => r._measurement == "gpu" and r._field =~ /mem_/)
Returns the following stream of tables:
_time | _measurement | _field | _value |
---|---|---|---|
2020-01-01T00:00:00Z | gpu | mem_used | 2517924577 |
2020-01-01T00:00:10Z | gpu | mem_used | 2695091978 |
2020-01-01T00:00:20Z | gpu | mem_used | 2576980377 |
2020-01-01T00:00:30Z | gpu | mem_used | 3006477107 |
2020-01-01T00:00:40Z | gpu | mem_used | 3543348019 |
2020-01-01T00:00:50Z | gpu | mem_used | 4402341478 |
_time | _measurement | _field | _value |
---|---|---|---|
2020-01-01T00:00:00Z | gpu | mem_total | 8589934592 |
2020-01-01T00:00:10Z | gpu | mem_total | 8589934592 |
2020-01-01T00:00:20Z | gpu | mem_total | 8589934592 |
2020-01-01T00:00:30Z | gpu | mem_total | 8589934592 |
2020-01-01T00:00:40Z | gpu | mem_total | 8589934592 |
2020-01-01T00:00:50Z | gpu | mem_total | 8589934592 |
Pivot fields into columns
Use pivot()
to pivot the mem_used
and mem_total
fields into columns.
Output includes mem_used
and mem_total
columns with values for each corresponding _time
.
// ...
|> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
Returns the following:
_time | _measurement | mem_used | mem_total |
---|---|---|---|
2020-01-01T00:00:00Z | gpu | 2517924577 | 8589934592 |
2020-01-01T00:00:10Z | gpu | 2695091978 | 8589934592 |
2020-01-01T00:00:20Z | gpu | 2576980377 | 8589934592 |
2020-01-01T00:00:30Z | gpu | 3006477107 | 8589934592 |
2020-01-01T00:00:40Z | gpu | 3543348019 | 8589934592 |
2020-01-01T00:00:50Z | gpu | 4402341478 | 8589934592 |
Map new values
Each row now contains the values necessary to calculate a percentage.
Use map()
to re-map values in each row.
Divide mem_used
by mem_total
and multiply by 100 to return the percentage.
To return a precise float percentage value that includes decimal points, the example
below casts integer field values to floats and multiplies by a float value (100.0
).
// ...
|> map(
fn: (r) => ({
_time: r._time,
_measurement: r._measurement,
_field: "mem_used_percent",
_value: float(v: r.mem_used) / float(v: r.mem_total) * 100.0
})
)
Query results:
_time | _measurement | _field | _value |
---|---|---|---|
2020-01-01T00:00:00Z | gpu | mem_used_percent | 29.31 |
2020-01-01T00:00:10Z | gpu | mem_used_percent | 31.37 |
2020-01-01T00:00:20Z | gpu | mem_used_percent | 30.00 |
2020-01-01T00:00:30Z | gpu | mem_used_percent | 35.00 |
2020-01-01T00:00:40Z | gpu | mem_used_percent | 41.25 |
2020-01-01T00:00:50Z | gpu | mem_used_percent | 51.25 |
Full query
from(bucket: "gpu-monitor")
|> range(start: 2020-01-01T00:00:00Z)
|> filter(fn: (r) => r._measurement == "gpu" and r._field =~ /mem_/)
|> pivot(rowKey: ["_time"], columnKey: ["_field"], valueColumn: "_value")
|> map(
fn: (r) => ({
_time: r._time,
_measurement: r._measurement,
_field: "mem_used_percent",
_value: float(v: r.mem_used) / float(v: r.mem_total) * 100.0
})
)
Examples
Calculate percentages using multiple fields
from(bucket: "example-bucket")
|> range(start: -1h)
|> filter(fn: (r) => r._measurement == "example-measurement")
|> filter(fn: (r) => r._field == "used_system" or r._field == "used_user" or r._field == "total")
|> pivot(rowKey: ["_time"], columnKey: ["_field"], valueColumn: "_value")
|> map(fn: (r) => ({r with _value: float(v: r.used_system + r.used_user) / float(v: r.total) * 100.0}))
Calculate percentages using multiple measurements
- Ensure measurements are in the same bucket.
- Use
filter()
to include data from both measurements. - Use
group()
to ungroup data and return a single table. - Use
pivot()
to pivot fields into columns. - Use
map()
to re-map rows and perform the percentage calculation.
from(bucket: "example-bucket")
|> range(start: -1h)
|> filter(fn: (r) => (r._measurement == "m1" or r._measurement == "m2") and (r._field == "field1" or r._field == "field2"))
|> group()
|> pivot(rowKey: ["_time"], columnKey: ["_field"], valueColumn: "_value")
|> map(fn: (r) => ({r with _value: r.field1 / r.field2 * 100.0}))
Calculate percentages using multiple data sources
import "sql"
import "influxdata/influxdb/secrets"
pgUser = secrets.get(key: "POSTGRES_USER")
pgPass = secrets.get(key: "POSTGRES_PASSWORD")
pgHost = secrets.get(key: "POSTGRES_HOST")
t1 = sql.from(
driverName: "postgres",
dataSourceName: "postgresql://${pgUser}:${pgPass}@${pgHost}",
query: "SELECT id, name, available FROM example_table",
)
t2 = from(bucket: "example-bucket")
|> range(start: -1h)
|> filter(fn: (r) => r._measurement == "example-measurement" and r._field == "example-field")
join(tables: {t1: t1, t2: t2}, on: ["id"])
|> map(fn: (r) => ({r with _value: r._value_t2 / r.available_t1 * 100.0}))
Support and feedback
Thank you for being part of our community! We welcome and encourage your feedback and bug reports for InfluxDB and this documentation. To find support, the following resources are available:
InfluxDB Cloud and InfluxDB Enterprise customers can contact InfluxData Support.