- How cache is different from artifacts
- Good caching practices
- Use multiple caches
- Use a fallback cache key
- Disable cache for specific jobs
- Inherit global configuration, but override specific settings per job
- Common use cases for caches
- Availability of the cache
- Clearing the cache
- Troubleshooting
Caching in GitLab CI/CD
A cache is one or more files that a job downloads and saves. Subsequent jobs that use the same cache don’t have to download the files again, so they execute more quickly.
To learn how to define the cache in your .gitlab-ci.yml
file,
see the cache
reference.
How cache is different from artifacts
Use cache for dependencies, like packages you download from the internet. Cache is stored where GitLab Runner is installed and uploaded to S3 if distributed cache is enabled.
Use artifacts to pass intermediate build results between stages. Artifacts are generated by a job, stored in GitLab, and can be downloaded.
Both artifacts and caches define their paths relative to the project directory, and can’t link to files outside it.
Cache
- Define cache per job by using the
cache
keyword. Otherwise it is disabled. - Subsequent pipelines can use the cache.
- Subsequent jobs in the same pipeline can use the cache, if the dependencies are identical.
- Different projects cannot share the cache.
- By default, protected and non-protected branches do not share the cache. However, you can change this behavior.
Artifacts
- Define artifacts per job.
- Subsequent jobs in later stages of the same pipeline can use artifacts.
- Different projects cannot share artifacts.
- Artifacts expire after 30 days by default. You can define a custom expiration time.
- The latest artifacts do not expire if keep latest artifacts is enabled.
- Use dependencies to control which jobs fetch the artifacts.
Good caching practices
To ensure maximum availability of the cache, do one or more of the following:
- Tag your runners and use the tag on jobs that share the cache.
- Use runners that are only available to a particular project.
-
Use a
key
that fits your workflow. For example, you can configure a different cache for each branch.
For runners to work with caches efficiently, you must do one of the following:
- Use a single runner for all your jobs.
- Use multiple runners that have distributed caching, where the cache is stored in S3 buckets. Shared runners on GitLab.com behave this way. These runners can be in autoscale mode, but they don’t have to be.
- Use multiple runners with the same architecture and have these runners share a common network-mounted directory to store the cache. This directory should use NFS or something similar. These runners must be in autoscale mode.
Use multiple caches
You can have a maximum of four caches:
test-job:
stage: build
cache:
- key:
files:
- Gemfile.lock
paths:
- vendor/ruby
- key:
files:
- yarn.lock
paths:
- .yarn-cache/
script:
- bundle install --path=vendor
- yarn install --cache-folder .yarn-cache
- echo Run tests...
If multiple caches are combined with a fallback cache key, the fallback cache is fetched every time a cache is not found.
Use a fallback cache key
You can use the If a cache with this tag is not found, you can use In the following example, if the If you define the cache globally, each job uses the
same definition. You can override this behavior for each job.
To disable it completely for a job, use an empty hash:
You can override cache settings without overwriting the global cache by using
anchors. For example, if you want to override the
For more information, see Usually you use caches to avoid downloading content, like dependencies
or libraries, each time you run a job. Node.js packages,
PHP packages, Ruby gems, Python libraries, and others can be cached.
For examples, see the .
To have jobs in each branch use the same cache, define a cache with the This configuration prevents you from accidentally overwriting the cache. However, the
first pipeline for a merge request is slow. The next time a commit is pushed to the branch, the
cache is re-used and jobs run faster.
To enable per-job and per-branch caching:
To enable per-stage and per-branch caching:
To share a cache across all branches and all jobs, use the same key for everything:
To share a cache between branches, but have a unique cache for each job:
If your project uses cache globally so that all jobs inherit it.
By default, npm stores cache data in the home folder ( You can use If you’re using yarn-offline-mirror
to cache the zipped If your project uses cache globally so that
all jobs inherit it. PHP libraries modules are installed in If your project uses cache globally so that
all jobs inherit it. Python libraries are installed in a virtual environment under If your project uses cache globally so that all
jobs inherit it. Gems are installed in If you have jobs that need different gems, use the For example, a testing job might not need the same gems as a job that deploys to
production:
If your project uses cache in a Caching is an optimization, but it isn’t guaranteed to always work. You might need
to regenerate cached files in each job that needs them.
After you define a cache in All caches defined for a job are archived in a single $CI_COMMIT_REF_SLUG
predefined variable
to specify your cache:key
. For example, if your
$CI_COMMIT_REF_SLUG
is test
, you can set a job to download cache that’s tagged with test
.
CACHE_FALLBACK_KEY
to
specify a cache to use when none exists.
$CI_COMMIT_REF_SLUG
is not found, the job uses the key defined
by the CACHE_FALLBACK_KEY
variable:
variables:
CACHE_FALLBACK_KEY: fallback-key
job1:
script:
- echo
cache:
key: "$CI_COMMIT_REF_SLUG"
paths:
- binaries/
Disable cache for specific jobs
job:
cache: []
Inherit global configuration, but override specific settings per job
policy
for one job:
cache: &global_cache
key: $CI_COMMIT_REF_SLUG
paths:
- node_modules/
- public/
- vendor/
policy: pull-push
job:
cache:
# inherit all global cache settings
<<: *global_cache
# override the policy
policy: pull
cache: policy
.
Common use cases for caches
Share caches between jobs in the same branch
key: $CI_COMMIT_REF_SLUG
:
cache:
key: $CI_COMMIT_REF_SLUG
cache:
key: "$CI_JOB_NAME-$CI_COMMIT_REF_SLUG"
cache:
key: "$CI_JOB_STAGE-$CI_COMMIT_REF_SLUG"
Share caches across jobs in different branches
cache:
key: one-key-to-rule-them-all
cache:
key: $CI_JOB_NAME
Cache Node.js dependencies
~/.npm
). However, you
can’t cache things outside of the project directory.
Instead, tell npm to use ./.npm
, and cache it per-branch:
#
# https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/ci/templates/Nodejs.gitlab-ci.yml
#
image: node:latest
# Cache modules in between jobs
cache:
key: $CI_COMMIT_REF_SLUG
paths:
- .npm/
before_script:
- npm ci --cache .npm --prefer-offline
test_async:
script:
- node ./specs/start.js ./specs/async.spec.js
Compute the cache key from the lock file
cache:key:files
to compute the cache
key from a lock file like package-lock.json
or yarn.lock
, and reuse it in many jobs.
# Cache modules using lock file
cache:
key:
files:
- package-lock.json
paths:
- .npm/
node_modules
tarballs. The cache generates more quickly, because
fewer files have to be compressed:
job:
script:
- echo 'yarn-offline-mirror ".yarn-cache/"' >> .yarnrc
- echo 'yarn-offline-mirror-pruning true' >> .yarnrc
- yarn install --frozen-lockfile --no-progress
cache:
key:
files:
- yarn.lock
paths:
- .yarn-cache/
Cache PHP dependencies
vendor/
and
are cached per-branch:
#
# https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/ci/templates/PHP.gitlab-ci.yml
#
image: php:7.2
# Cache libraries in between jobs
cache:
key: $CI_COMMIT_REF_SLUG
paths:
- vendor/
before_script:
# Install and run Composer
- curl --show-error --silent "https://getcomposer.org/installer" | php
- php composer.phar install
test:
script:
- vendor/bin/phpunit --configuration phpunit.xml --coverage-text --colors=never
Cache Python dependencies
venv/
.
pip’s cache is defined under .cache/pip/
and both are cached per-branch:
#
# https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/ci/templates/Python.gitlab-ci.yml
#
image: python:latest
# Change pip's cache directory to be inside the project directory since we can
# only cache local items.
variables:
PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache/pip"
# Pip's cache doesn't store the python packages
# https://pip.pypa.io/en/stable/reference/pip_install/#caching
#
# If you want to also cache the installed packages, you have to install
# them in a virtualenv and cache it as well.
cache:
paths:
- .cache/pip
- venv/
before_script:
- python -V # Print out python version for debugging
- pip install virtualenv
- virtualenv venv
- source venv/bin/activate
test:
script:
- python setup.py test
- pip install flake8
- flake8 .
Cache Ruby dependencies
vendor/ruby/
and are cached per-branch:
#
# https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/ci/templates/Ruby.gitlab-ci.yml
#
image: ruby:2.6
# Cache gems in between builds
cache:
key: $CI_COMMIT_REF_SLUG
paths:
- vendor/ruby
before_script:
- ruby -v # Print out ruby version for debugging
- bundle install -j $(nproc) --path vendor/ruby # Install dependencies into ./vendor/ruby
rspec:
script:
- rspec spec
prefix
keyword in the global cache
definition. This configuration generates a different
cache for each job.
cache:
key:
files:
- Gemfile.lock
prefix: $CI_JOB_NAME
paths:
- vendor/ruby
test_job:
stage: test
before_script:
- bundle install --without production --path vendor/ruby
script:
- bundle exec rspec
deploy_job:
stage: production
before_script:
- bundle install --without test --path vendor/ruby
script:
- bundle exec deploy
Cache Go dependencies
go-cache
template, that
any job can extend. Go modules are installed in ${GOPATH}/pkg/mod/
and
are cached for all of the go
projects:
.go-cache:
variables:
GOPATH: $CI_PROJECT_DIR/.go
before_script:
- mkdir -p .go
cache:
paths:
- .go/pkg/mod/
test:
image: golang:1.13
extends: .go-cache
script:
- go test ./... -v -short
Availability of the cache
.gitlab-ci.yml
,
the availability of the cache depends on:
Where the caches are stored
cache.zip
file.
The runner configuration defines where the file is stored. By default, the cache
is stored on the machine where GitLab Runner is installed. The location also depends on the type of executor.
Runner executor | Default path of the cache |
---|---|
Shell | Locally, under the gitlab-runner user’s home directory: /home/gitlab-runner/cache/<user>/<project>/<cache-key>/cache.zip .
|
Docker | Locally, under Docker volumes: /var/lib/docker/volumes/<volume-id>/_data/<user>/<project>/<cache-key>/cache.zip .
|
Docker Machine (autoscale runners) | The same as the Docker executor. |
If you use cache and artifacts to store the same path in your jobs, the cache might be overwritten because caches are restored before artifacts.
Cache key names
A suffix is added to the cache key, with the exception of the fallback cache key.
This is done in order to prevent cache poisoning that might occur through manipulation of the cache in a non-protected
branch. Any subsequent protected-branch jobs would then potentially use a poisoned cache from the preceding job.
As an example, assuming that cache.key
is set to $CI_COMMIT_REF_SLUG
, and that we have two branches main
and feature
, then the following table represents the resulting cache keys:
Branch name | Cache key |
---|---|
main
| main-protected
|
feature
| feature-non_protected
|
Use the same cache for all branches
If you do not want to use cache key names,
you can have all branches (protected and unprotected) use the same cache.
The cache separation with cache key names is a security feature
and should only be disabled in an environment where all users with Developer role are highly trusted.
To use the same cache for all branches:
This example shows two jobs in two consecutive stages:
If one machine has one runner installed, then all jobs for your project
run on the same host:
By using a single runner on a single machine, you don’t have the issue where
During the caching process, there’s also a couple of things to consider:
It works this way because the cache created for one runner
often isn’t valid when used by a different one. A different runner may run on a
different architecture (for example, when the cache includes binary files). Also,
because the different steps might be executed by runners running on different
machines, it is a safe default.
Runners use cache to speed up the execution
of your jobs by reusing existing data. This can sometimes lead to
inconsistent behavior.
There are two ways to start with a fresh copy of the cache.
Change the value for
You can clear the cache in the GitLab UI:
On the next commit, your CI/CD jobs use a new cache.
If you have a cache mismatch, follow these steps to troubleshoot.
If you have only one runner assigned to your project, the cache
is stored on the runner’s machine by default.
If two jobs have the same cache key but a different path, the caches can be overwritten.
For example:
To fix this issue, use different In this example, you have more than one runner assigned to your
project, and distributed cache is not enabled.
The second time the pipeline runs, you want Even if the
How archiving and extracting works
stages:
- build
- test
before_script:
- echo "Hello"
job A:
stage: build
script:
- mkdir vendor/
- echo "build" > vendor/hello.txt
cache:
key: build-cache
paths:
- vendor/
after_script:
- echo "World"
job B:
stage: test
script:
- cat vendor/hello.txt
cache:
key: build-cache
paths:
- vendor/
job A
runs.
before_script
is executed.
script
is executed.
after_script
is executed.
cache
runs and the vendor/
directory is zipped into cache.zip
.
This file is then saved in the directory based on the
runner’s setting and the cache: key
.
job B
runs.
before_script
is executed.
script
is executed.
job B
might execute on a runner different from job A
. This setup guarantees the
cache can be reused between stages. It only works if the execution goes from the build
stage
to the test
stage in the same runner/machine. Otherwise, the cache might not be available.
cache.zip
, everything in the zip file is
extracted in the job’s working directory (usually the repository which is
pulled down), and the runner doesn’t mind if the archive of job A
overwrites
things in the archive of job B
.
Clearing the cache
Clear the cache by changing
cache:key
cache: key
in your .gitlab-ci.yml
file.
The next time the pipeline runs, the cache is stored in a different location.
Clear the cache manually
cache-<index>
, and the index increments by one. The old cache is not deleted. You can manually delete these files from the runner storage.Troubleshooting
Cache mismatch
Reason for a cache mismatch
How to fix it
You use multiple standalone runners (not in autoscale mode) attached to one project without a shared cache.
Use only one runner for your project or use multiple runners with distributed cache enabled.
You use runners in autoscale mode without a distributed cache enabled.
Configure the autoscale runner to use a distributed cache.
The machine the runner is installed on is low on disk space or, if you’ve set up distributed cache, the S3 bucket where the cache is stored doesn’t have enough space.
Make sure you clear some space to allow new caches to be stored. There’s no automatic way to do this.
You use the same key
for jobs where they cache different paths.
Use different cache keys to that the cache archive is stored to a different location and doesn’t overwrite wrong caches.
Cache mismatch example 1
stages:
- build
- test
job A:
stage: build
script: make build
cache:
key: same-key
paths:
- public/
job B:
stage: test
script: make test
cache:
key: same-key
paths:
- vendor/
job A
runs.
public/
is cached as cache.zip.
job B
runs.
vendor/
is cached as cache.zip and overwrites the previous one.
job A
runs it uses the cache of job B
which is different
and thus isn’t effective.
keys
for each job.
Cache mismatch example 2
job A
and job B
to re-use their cache (which in this case
is different):
stages:
- build
- test
job A:
stage: build
script: build
cache:
key: keyA
paths:
- vendor/
job B:
stage: test
script: test
cache:
key: keyB
paths:
- vendor/
key
is different, the cached files might get “cleaned” before each
stage if the jobs run on different runners in subsequent pipelines.
Help & feedback
Docs
Edit this page to fix an error or add an improvement in a merge request.Create an issue to suggest an improvement to this page.
Product
Create an issue if there's something you don't like about this feature.Propose functionality by submitting a feature request.
to help shape new features.
Feature availability and product trials
to see all GitLab tiers and features, or to upgrade.with access to all features for 30 days.
Get Help
If you didn't find what you were looking for,
search the docs.
If you want help with something specific and could use community support,
.
For problems setting up or using this feature (depending on your GitLab
subscription).